Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 131
1.
Proc Natl Acad Sci U S A ; 121(16): e2317783121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38588430

GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.


Cerebral Cortex , Neocortex , Mice , Animals , Cerebral Cortex/metabolism , Cell Movement/physiology , Neurogenesis/physiology , Interneurons/physiology , Biomarkers/metabolism , GABAergic Neurons/physiology
2.
bioRxiv ; 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38464181

Coincidence detection is a common neural computation that identifies co-occurring stimuli by integration of inputs. In the auditory system, octopus cells act as coincidence detectors for complex sounds that include both synchronous and sequenced combinations of frequencies. Octopus cells must detect coincidence on both the millisecond and submillisecond time scale, unlike the average neuron, which integrates inputs over time on the order of tens of milliseconds. Here, we show that octopus cell computations in the cell body are shaped by inhibition in the dendrites, which adjusts the strength and timing of incoming signals to achieve submillisecond acuity. This mechanism is crucial for the fundamental process of integrating the synchronized frequencies of natural auditory signals over time.

3.
bioRxiv ; 2024 Jan 21.
Article En | MEDLINE | ID: mdl-38313283

Opioid receptors within the CNS regulate pain sensation and mood and are key targets for drugs of abuse. Within the adult rodent hippocampus (HPC), µ-opioid receptor agonists suppress inhibitory parvalbumin-expressing interneurons (PV-INs), thus disinhibiting the circuit. However, it is uncertain if this disinhibitory motif is conserved in other cortical regions, species, or across development. We observed that PV-IN mediated inhibition is robustly suppressed by opioids in HPC but not neocortex in mice and nonhuman primates, with spontaneous inhibitory tone in resected human tissue also following a consistent dichotomy. This hippocampal disinhibitory motif was established in early development when immature PV-INs and opioids already influence primordial network rhythmogenesis. Acute opioid-mediated modulation was partially occluded with morphine pretreatment, with implications for the effects of opioids on hippocampal network activity during circuit maturation as well as learning and memory. Together, these findings demonstrate that PV-INs exhibit a divergence in opioid sensitivity across brain regions that is remarkably conserved across evolution and highlights the underappreciated role of opioids acting through immature PV-INs in shaping hippocampal development.

4.
bioRxiv ; 2024 Apr 03.
Article En | MEDLINE | ID: mdl-37790336

During brain development, neural circuits undergo major activity-dependent restructuring. Circuit wiring mainly occurs through synaptic strengthening following the Hebbian "fire together, wire together" precept. However, select connections, essential for circuit development, are transient. They are effectively connected early in development, but strongly diminish during maturation. The mechanisms by which transient connectivity recedes are unknown. To investigate this process, we characterize transient thalamocortical inputs, which depress onto somatostatin inhibitory interneurons during development, by employing optogenetics, chemogenetics, transcriptomics and CRISPR-based strategies. We demonstrate that in contrast to typical activity-dependent mechanisms, transient thalamocortical connectivity onto somatostatin interneurons is non-canonical and involves metabotropic signaling. Specifically, metabotropic-mediated transcription, of guidance molecules in particular, supports the elimination of this connectivity. Remarkably, we found that this developmental process impacts the development of normal exploratory behaviors of adult mice.

5.
Neuron ; 112(2): 184-200, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-37913772

Layer 1 (L1) of the neocortex acts as a nexus for the collection and processing of widespread information. By integrating ascending inputs with extensive top-down activity, this layer likely provides critical information regulating how the perception of sensory inputs is reconciled with expectation. This is accomplished by sorting, directing, and integrating the complex network of excitatory inputs that converge onto L1. These signals are combined with neuromodulatory afferents and gated by the wealth of inhibitory interneurons that either are embedded within L1 or send axons from other cortical layers. Together, these interactions dynamically calibrate information flow throughout the neocortex. This review will primarily focus on L1 within the primary sensory cortex and will use these insights to understand L1 in other cortical areas.


Neocortex , Neocortex/physiology , Interneurons/physiology , Axons , Cell Movement , Patch-Clamp Techniques
6.
Neuron ; 111(17): 2675-2692.e9, 2023 09 06.
Article En | MEDLINE | ID: mdl-37390821

The cardinal classes are a useful simplification of cortical interneuron diversity, but such broad subgroupings gloss over the molecular, morphological, and circuit specificity of interneuron subtypes, most notably among the somatostatin interneuron class. Although there is evidence that this diversity is functionally relevant, the circuit implications of this diversity are unknown. To address this knowledge gap, we designed a series of genetic strategies to target the breadth of somatostatin interneuron subtypes and found that each subtype possesses a unique laminar organization and stereotyped axonal projection pattern. Using these strategies, we examined the afferent and efferent connectivity of three subtypes (two Martinotti and one non-Martinotti) and demonstrated that they possess selective connectivity with intratelecephalic or pyramidal tract neurons. Even when two subtypes targeted the same pyramidal cell type, their synaptic targeting proved selective for particular dendritic compartments. We thus provide evidence that subtypes of somatostatin interneurons form cell-type-specific cortical circuits.


Interneurons , Neurons , Interneurons/physiology , Neurons/physiology , Pyramidal Cells/physiology , Axons/metabolism , Somatostatin/metabolism , Parvalbumins/metabolism
9.
Cell ; 185(5): 755-758, 2022 03 03.
Article En | MEDLINE | ID: mdl-35245477

Support for basic science has been eclipsed by initiatives aimed at specific medical problems. The latest example is the dismantling of the Skirball Institute at NYU School of Medicine. Here, we reflect on the achievements and mission underlying the Skirball to gain insight into the dividends of maintaining a basic science vision within the academic enterprises.


Academies and Institutes , Biomedical Research , Schools, Medical
10.
Nature ; 601(7893): 404-409, 2022 01.
Article En | MEDLINE | ID: mdl-34912118

During neurogenesis, mitotic progenitor cells lining the ventricles of the embryonic mouse brain undergo their final rounds of cell division, giving rise to a wide spectrum of postmitotic neurons and glia1,2. The link between developmental lineage and cell-type diversity remains an open question. Here we used massively parallel tagging of progenitors to track clonal relationships and transcriptomic signatures during mouse forebrain development. We quantified clonal divergence and convergence across all major cell classes postnatally, and found diverse types of GABAergic neuron that share a common lineage. Divergence of GABAergic clones occurred during embryogenesis upon cell-cycle exit, suggesting that differentiation into subtypes is initiated as a lineage-dependent process at the progenitor cell level.


Brain , Cell Lineage , GABAergic Neurons , Neural Stem Cells , Neurogenesis , Animals , Brain/cytology , Cell Differentiation , Embryonic Development , GABAergic Neurons/cytology , Mice , Mitosis , Neural Stem Cells/cytology , Neurogenesis/genetics , Transcriptome
11.
Cell Rep ; 37(6): 109993, 2021 11 09.
Article En | MEDLINE | ID: mdl-34758329

Parvalbumin and somatostatin inhibitory interneurons gate information flow in discrete cortical areas that compute sensory and cognitive functions. Despite the considerable differences between areas, individual interneuron subtypes are genetically invariant and are thought to form canonical circuits regardless of which area they are embedded in. Here, we investigate whether this is achieved through selective and systematic variations in their afferent connectivity during development. To this end, we examined the development of their inputs within distinct cortical areas. We find that interneuron afferents show little evidence of being globally stereotyped. Rather, each subtype displays characteristic regional connectivity and distinct developmental dynamics by which this connectivity is achieved. Moreover, afferents dynamically regulated during development are disrupted by early sensory deprivation and in a model of fragile X syndrome. These data provide a comprehensive map of interneuron afferents across cortical areas and reveal the logic by which these circuits are established during development.


Cerebral Cortex/pathology , Fragile X Mental Retardation Protein/physiology , Fragile X Syndrome/pathology , Interneurons/pathology , Presynaptic Terminals/pathology , Sense Organs/pathology , Synapses/pathology , Animals , Cerebral Cortex/metabolism , Female , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Interneurons/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Pathways , Presynaptic Terminals/metabolism , Rabies virus/genetics , Sense Organs/metabolism , Synapses/metabolism
13.
Neuron ; 109(21): 3473-3485.e5, 2021 11 03.
Article En | MEDLINE | ID: mdl-34478630

Higher-order projections to sensory cortical areas converge on layer 1 (L1), the primary site for integration of top-down information via the apical dendrites of pyramidal neurons and L1 GABAergic interneurons. Here we investigated the contribution of early thalamic inputs onto L1 interneurons for establishment of top-down connectivity in the primary visual cortex. We find that bottom-up thalamic inputs predominate during L1 development and preferentially target neurogliaform cells. We show that these projections are critical for the subsequent strengthening of top-down inputs from the anterior cingulate cortex onto L1 neurogliaform cells. Sensory deprivation or selective removal of thalamic afferents blocked this phenomenon. Although early activation of the anterior cingulate cortex resulted in premature strengthening of these top-down afferents, this was dependent on thalamic inputs. Our results demonstrate that proper establishment of top-down connectivity in the visual cortex depends critically on bottom-up inputs from the thalamus during postnatal development.


Interneurons , Visual Cortex , Dendrites/physiology , Interneurons/physiology , Pyramidal Cells , Thalamus , Visual Cortex/physiology
14.
Nature ; 597(7878): 693-697, 2021 09.
Article En | MEDLINE | ID: mdl-34552240

One of the hallmarks of the cerebral cortex is the extreme diversity of interneurons1-3. The two largest subtypes of cortical interneurons, parvalbumin- and somatostatin-positive cells, are morphologically and functionally distinct in adulthood but arise from common lineages within the medial ganglionic eminence4-11. This makes them an attractive model for studying the generation of cell diversity. Here we examine how developmental changes in transcription and chromatin structure enable these cells to acquire distinct identities in the mouse cortex. Generic interneuron features are first detected upon cell cycle exit through the opening of chromatin at distal elements. By constructing cell-type-specific gene regulatory networks, we observed that parvalbumin- and somatostatin-positive cells initiate distinct programs upon settling within the cortex. We used these networks to model the differential transcriptional requirement of a shared regulator, Mef2c, and confirmed the accuracy of our predictions through experimental loss-of-function experiments. We therefore reveal how a common molecular program diverges to enable these neuronal subtypes to acquire highly specialized properties by adulthood. Our methods provide a framework for examining the emergence of cellular diversity, as well as for quantifying and predicting the effect of candidate genes on cell-type-specific development.


Cerebral Cortex/cytology , Epigenesis, Genetic , Gene Regulatory Networks , Interneurons/cytology , Neurogenesis , Animals , Cell Differentiation , Cell Movement , Female , MEF2 Transcription Factors/genetics , Male , Mice , Mice, Knockout , Parvalbumins/metabolism , RNA-Seq , Single-Cell Analysis , Somatostatin/metabolism
15.
Chem Sci ; 12(32): 10901-10918, 2021 Aug 18.
Article En | MEDLINE | ID: mdl-34476070

Phagocytosis by glial cells is essential to regulate brain function during health and disease. Therapies for Alzheimer's disease (AD) have primarily focused on targeting antibodies to amyloid ß (Aß) or inhibitng enzymes that make it, and while removal of Aß by phagocytosis is protective early in AD it remains poorly understood. Impaired phagocytic function of glial cells during later stages of AD likely contributes to worsened disease outcome, but the underlying mechanisms of how this occurs remain unknown. We have developed a human Aß1-42 analogue (AßpH) that exhibits green fluorescence upon internalization into the acidic organelles of cells but is non-fluorescent at physiological pH. This allowed us to image, for the first time, glial uptake of AßpH in real time in live animals. We find that microglia phagocytose more AßpH than astrocytes in culture, in brain slices and in vivo. AßpH can be used to investigate the phagocytic mechanisms responsible for removing Aß from the extracellular space, and thus could become a useful tool to study Aß clearance at different stages of AD.

16.
Cell ; 184(15): 4048-4063.e32, 2021 07 22.
Article En | MEDLINE | ID: mdl-34233165

Microglia, the resident immune cells of the brain, have emerged as crucial regulators of synaptic refinement and brain wiring. However, whether the remodeling of distinct synapse types during development is mediated by specialized microglia is unknown. Here, we show that GABA-receptive microglia selectively interact with inhibitory cortical synapses during a critical window of mouse postnatal development. GABA initiates a transcriptional synapse remodeling program within these specialized microglia, which in turn sculpt inhibitory connectivity without impacting excitatory synapses. Ablation of GABAB receptors within microglia impairs this process and leads to behavioral abnormalities. These findings demonstrate that brain wiring relies on the selective communication between matched neuronal and glial cell types.


Microglia/metabolism , Neural Inhibition/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Animals, Newborn , Behavior, Animal , Gene Expression Regulation , HEK293 Cells , Humans , Mice , Parvalbumins/metabolism , Phenotype , Receptors, GABA-B/metabolism , Synapses/physiology , Transcription, Genetic
17.
Nat Commun ; 12(1): 3773, 2021 06 18.
Article En | MEDLINE | ID: mdl-34145239

Abnormalities in GABAergic inhibitory circuits have been implicated in the aetiology of autism spectrum disorder (ASD). ASD is caused by genetic and environmental factors. Several genes have been associated with syndromic forms of ASD, including FOXG1. However, when and how dysregulation of FOXG1 can result in defects in inhibitory circuit development and ASD-like social impairments is unclear. Here, we show that increased or decreased FoxG1 expression in both excitatory and inhibitory neurons results in ASD-related circuit and social behavior deficits in our mouse models. We observe that the second postnatal week is the critical period when regulation of FoxG1 expression is required to prevent subsequent ASD-like social impairments. Transplantation of GABAergic precursor cells prior to this critical period and reduction in GABAergic tone via Gad2 mutation ameliorates and exacerbates circuit functionality and social behavioral defects, respectively. Our results provide mechanistic insight into the developmental timing of inhibitory circuit formation underlying ASD-like phenotypes in mouse models.


Autism Spectrum Disorder/genetics , Brain/growth & development , Forkhead Transcription Factors/genetics , GABAergic Neurons/cytology , Nerve Tissue Proteins/genetics , Social Behavior , Animals , Brain/physiology , Disease Models, Animal , GABAergic Neurons/transplantation , Glutamate Decarboxylase/genetics , Mice
18.
Neuron ; 109(6): 997-1012.e9, 2021 03 17.
Article En | MEDLINE | ID: mdl-33529646

Interneurons expressing cholecystokinin (CCK) and parvalbumin (PV) constitute two key GABAergic controllers of hippocampal pyramidal cell output. Although the temporally precise and millisecond-scale inhibitory regulation of neuronal ensembles delivered by PV interneurons is well established, the in vivo recruitment patterns of CCK-expressing basket cell (BC) populations has remained unknown. We show in the CA1 of the mouse hippocampus that the activity of CCK BCs inversely scales with both PV and pyramidal cell activity at the behaviorally relevant timescales of seconds. Intervention experiments indicated that the inverse coupling of CCK and PV GABAergic systems arises through a mechanism involving powerful inhibitory control of CCK BCs by PV cells. The tightly coupled complementarity of two key microcircuit regulatory modules demonstrates a novel form of brain-state-specific segregation of inhibition during spontaneous behavior.


CA1 Region, Hippocampal/physiology , Interneurons/physiology , Pyramidal Cells/physiology , Synaptic Transmission/physiology , Animals , Cholecystokinin/metabolism , Female , Male , Mice, Inbred C57BL , Mice, Transgenic , Parvalbumins/metabolism
20.
Nature ; 586(7828): 262-269, 2020 10.
Article En | MEDLINE | ID: mdl-32999462

Primates and rodents, which descended from a common ancestor around 90 million years ago1, exhibit profound differences in behaviour and cognitive capacity; the cellular basis for these differences is unknown. Here we use single-nucleus RNA sequencing to profile RNA expression in 188,776 individual interneurons across homologous brain regions from three primates (human, macaque and marmoset), a rodent (mouse) and a weasel (ferret). Homologous interneuron types-which were readily identified by their RNA-expression patterns-varied in abundance and RNA expression among ferrets, mice and primates, but varied less among primates. Only a modest fraction of the genes identified as 'markers' of specific interneuron subtypes in any one species had this property in another species. In the primate neocortex, dozens of genes showed spatial expression gradients among interneurons of the same type, which suggests that regional variation in cortical contexts shapes the RNA expression patterns of adult neocortical interneurons. We found that an interneuron type that was previously associated with the mouse hippocampus-the 'ivy cell', which has neurogliaform characteristics-has become abundant across the neocortex of humans, macaques and marmosets but not mice or ferrets. We also found a notable subcortical innovation: an abundant striatal interneuron type in primates that had no molecularly homologous counterpart in mice or ferrets. These interneurons expressed a unique combination of genes that encode transcription factors, receptors and neuropeptides and constituted around 30% of striatal interneurons in marmosets and humans.


Interneurons/cytology , Primates , Animals , Callithrix , Cerebral Cortex/cytology , Female , Ferrets , Hippocampus/cytology , Humans , Interneurons/metabolism , LIM-Homeodomain Proteins/metabolism , Lysosomal Membrane Proteins/metabolism , Macaca , Male , Mice , Neostriatum/cytology , Nerve Tissue Proteins/metabolism , RNA/genetics , Species Specificity , Transcription Factors/metabolism
...